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What do you
see in this logo?



First, some housekeeping

• Monday (organized)
 Birraria La Corte. Campo San Polo, 2168 at 19:30
 Fixed menu

• Tuesday -- nothing organized (on your own)
• Wednesday (organized, [official] meeting dinner)

 Hyatt Restaurant at Murano at 19:30.
Private boat from San Servolo to Murano Island.

 4 course menu
• Thursday 

Self-organized aperitivo at the fish market next to Rialto 
Bridge. Venetian tapas in informal setting (request 
reimbursement from your University)

• Friday -- nothing organized (on your own)



What you will learn in this presentation

• What ESSGN is / who we are
• What your training looks like / how it is structured
• Why social-science genetics is cool, important and what 

we can do now 
• Basic recent history, GWAS and PGIs
• A few examples of gene-by-environment interplay 

studies (if we have time)



• Introduction to ESSGN
• ESSGN structure, goals and projects
• Motivation
• Social-science genetics

i. introduction
ii. genetics primer
iii. genome-wide association studies
iv. polygenic indices
v. gene-by-environment (GxE) interplay

• Concluding remarks

Outline



Eight universities …



… connecting many researchers (only leads shown)

Project leaders
Institute Project leader Email address
VU Titus Galama Abdel Abdellaoui t.j.galama@vu.nl a.abdellaoui@amsterdamumc.nl 
EUR Hans van Kippersluis Niels Rietveld hvankippersluis@ese.eur.nl nrietveld@ese.eur.nl
U of Bielefeld Felix Tropf Martin Diewald fctropf@gmail.com martin.diewald@uni-bielefeld.de
U of Bologna Pietro Biroli Nicola Barban pietro.biroli@unibo.it n.barban@unibo.it
U of Oslo Eivind Ystrom Alexandra Havdahl eivind.ystrom@psykologi.uio.no alexandra.havdahl@psykologi.uio.no
U of Uppsala Rafael Ahlskog Sven Oskarsson rafael.ahlskog@statsvet.uu.se Sven.Oskarsson@statsvet.uu.se
U of Bristol Stephanie von Hinke Paul Hufe s.vonhinke@bristol.ac.uk paul.hufe@bristol.ac.uk
U of Oxford Melinda Mills Augustine Kong melinda.mills@sociology.ox.ac.uk augustine.kong@bdi.ox.ac.uk

mailto:t.j.galama@vu.nl
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mailto:hvankippersluis@ese.eur.nl
mailto:nrietveld@ese.eur.nl
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mailto:eivind.ystrom@psykologi.uio.no
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mailto:Sven.Oskarsson@statsvet.uu.se
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Seven non-academic partners



… providing policy, health and other experiences (only leads shown)

Associate Partners 
Institute Name Email address
GO Science Tom Wells tom.wells@go-science.gov.uk 
Prometeia Michele Leoncelli michele.leoncelli@prometeia.com 
IARC Isabelle Soerjomataram soerjomatarami@iarc.who.int 
RAND Stijn Hoorens hoorens@randeurope.org 
Health Foundation Toby Watt toby.watt@health.org.uk 
CentERdata Marcel Das / Tom Emery marcel.das@centerdata.nl 
NIDI Govert Bijwaard bijwaard@nidi.nl 

mailto:tom.wells@go-science.gov.uk
mailto:michele.leoncelli@prometeia.com
mailto:soerjomatarami@iarc.who.int
mailto:hoorens@randeurope.org
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mailto:marcel.das@centerdata.nl
mailto:bijwaard@nidi.nl


Thirteen DCs …

Doctoral candidates
DCs Name E-mail address Institute
DC1 Tim Wienand tim-wienand@gmx.de EUR
DC2 Xinmiao Zhang xinmiaozh@gmail.com EUR
DC3 Qiyuan Peng pengqiyuan1128@gmail.com U of Oslo
DC4 tbd VU

DC5 Sergio Ordonez-Beltran
sergio-daniel.ordonez-beltran@etu.univ-
amu.fr U of Bristol

DC6 Nadia Harerimana nadia.harerimana@uni-bielefeld.de U of Bielefeld
DC7 Lyydia Alajääskö lyydia.alajaasko@gmail.com VU
DC8 Rossella de Sabbata rosselladesabbata@gmail.com U of Bristol 

DC9 Vincent Straub
vincejstraub@gmail.com; 
vincent.straub@seh.ox.ac.uk U of Oxford

DC10 Mar Talens Martin-Borregon mar.talensmb@gmail.com U of Bologna
DC11 Tomeu Lopez-Nieto Veitch tomeu.lnv@gmail.com U of Bologna
DC12 Ralph Porneso ralphporneso@gmail.com U of Oslo
DC13 Asya Bülbül asiabulbul@gmail.com U of Uppsala

mailto:tim-wienand@gmx.de
mailto:xinmiaozh@gmail.com
mailto:pengqiyuan1128@gmail.com
mailto:sergio-daniel.ordonez-beltran@etu.univ-amu.fr
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… and several affiliated DCs / postdocs 
Affiliated ESSGN PhDs / Postdocs
Institute Name Email address Supervisor
U of Bologna Giorgia Mezzetti Pietro Biroli 
U of Oxford Robert Campbell h.campbell.robert@gmail.com Melinda Mills
U of Bielefeld Yixuan Liu yixuan.liu@uni-bielefeld.de Martin Diewald
U of Oslo Meseret Mamo Alexandra Havdahl 
U of Oslo Stian Valand Alexandra Havdahl 
U of Oslo tbd Alexandra Havdahl 
U of Uppsala Qinya Feng qinya.feng@statsvet.uu.se Sven Oskarsson/Rafael Ahlskog 
U of Uppsala Oskar Pettersson oskar.pettersson@statsvet.uu.se Sven Oskarsson/Rafael Ahlskog 
EUR Tilbe Atav Niels Rietveld
U of Oslo Qi Qin qi.qin@psykologi.uio.no Eivind Ystrom 
U of Oslo Joakim Coleman Ebeltoft j.c.ebeltoft@psykologi.uio.no Eivind Ystrom 
U of Oslo to be hired Eivind Ystrom 
VU David van den Berg Abdel Abdellaoui
VU Marina Aguilar Palma m.aguiar.palma@vu.nl Titus Galama
VU Nursena Aksunger n.aksunger@vu.nl Titus Galama

mailto:h.campbell.robert@gmail.com
mailto:yixuan.liu@uni-bielefeld.de
mailto:qinya.feng@statsvet.uu.se
mailto:oskar.pettersson@statsvet.uu.se
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mailto:m.aguiar.palma@vu.nl
mailto:n.aksunger@vu.nl


Website is up, but needs more content (Rafael)
www.essgn.org



Tabs for news, participants etc. and X (Twitter)





• Introduction to ESSGN
• ESSGN structure, goals and projects
• Motivation
• Social-science genetics

i. introduction
ii. genetics primer
iii. genome-wide association studies
iv. polygenic indices
v. gene-by-environment (GxE) interplay

• Concluding remarks

Outline



Kim Zandvliet

Stephanie von Hinke and Titus Galama

Management



Participating organisation Country Beneficiary/AP No. of PhDs PI/Co-Is

VU University Amsterdam NL Beneficiary 2 PhDs Titus Galama
Andries Marees
Karin Verweij
Abdel Abdellaoui
Aysu Okbay

Erasmus University Rotterdam NL Beneficiary 2 PhDs Hans van Kippersluis
Niels Rietveld
Janine Felix
Dilnoza Muslimova
Tilbe Atav

University of Bielefeld DE Beneficiary 1 PhD Felix Tropf
Martin Diewald

University of Bologna IT Beneficiary 2 PhDs Nicola Barban
Pietro Biroli

University of Oslo NO Beneficiary 2 PhDs Alexandra Havdahl
Eivind Ystrom

University of Uppsala SE Beneficiary 1 PhD Sven Oskarsson
Rafael Ahlskog

University of Bristol UK Associated Partner 2 PhDs Stephanie von Hinke
Paul Hufe
Emil Sorensen
Nicolai Vitt
Neil Davies

University of Oxford UK Associated Partner 1 PhD Melinda Mills
Augustine Kong
Evelina Akimova
Xuejie Ding

Additional support for DCs from other researchers / postdocs



To what extent do inequalities in life chances arise from genetic 
variation, environmental factors, and their interplay, and what can we 
do about it?

Research Objective 1:
To what extent do nature and nurture contribute to equality of opportunity 
and intergenerational mobility?
DC 1-3

Research Objective 2: 
How important is the nature-nurture interplay in causally shaping life 
chances?
DC 4-13

Overarching question and research objectives



DC4: tbd (VU)

DC5: Sergio Ordonez-
Beltran (Bristol)

DC6: Nadia 
Harerimana (Bielefeld)

DC7: Lyydia Alajääskö
(VU)

DC1: Tim Wienand
(EUR)

DC2: Zinmiau Zhang 
(EUR)

DC3: Qiyuan Peng 
(Oslo)



DC8: Rossella de 
Sabbata (Bristol)

DC9: Vincent Straub 
(Oxford)

DC10: Mar Talens
Martin-Borregon
(Bologna)

DC11: Tomeu Lopez-
Nieto Veitch (Bologna)

DC12: Ralph Porneso
(Oslo)

DC13: Asya Bülbül
(Uppsala)



Month

ESRHost 1 6 12 18 24 30 36 42 48
1 EUR PROMETEIA UNIVBRIS
2 EUR RAND UNIBO
3 UNIOSLO GO SCIENCE EUR
4 VU HEALTH FDN. UNIOSLO
5 UNIVBRIS RAND EUR
6 UNIBI ODISSEI VU
7 VU NIDI UNIBI
8 UNIVBRIS WHO VU
9 UOXF WHO UNIVBRIS

10 UNIBO PROMETEIA UOXF
11 UNIBO WHO UU
12 UNIOSLO HEALTH FDN. UNIBO
13 UU RAND UNIOSLO
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Exchanges with non-academic partners, 
meetings and annual conferences



1. Local institutional networks
• Main supervisor(s)
• Mentored by senior post-doc / junior faculty if possible (DT to set up)

2. Cross institutional networks
• Co-supervision by at least 1 other researcher from a different University 

within the Consortium 
• External mentor (DT to set up)

3. Whole network teaching
• All supervisors will contribute
• Material shared across all Universities 

Training



Co-supervision by supervisor at:
DC1: Tim Wienand (EUR) University of Bristol 

DC2: Zinmiau Zhang (EUR) University of Bologna

DC3: Qiyuan Peng (Oslo) Erasmus University Rotterdam

DC4: tbc (VU) University of Oslo

DC5: Sergio Ordonez-Beltran (Bristol) Erasmus University Rotterdam

DC6: Nadia Harerimana (Bielefeld) VU University Amsterdam

DC7: Lyydia Alajääskö (VU) University of Bielefeld

DC8: Rossella de Sabbata (Bristol) VU University Amsterdam

DC9: Vincent Straub (Oxford) University of Bristol

DC10: Mar Talens Martin-Borregon (Bologna) University of Oxford

DC11: Tomeu Lopez-Nieto Veitch (Bologna) University of Uppsala

DC12: Ralph Porneso (Oslo) University of Bologna

DC13: Asya Bülbül (Uppsala) University of Oslo

Co-supervision by at least 1 other researcher from a 
different University within the Consortium



External Advisory Board: Paige Harden, Kathleen Mullen Harris, Dan Benjamin, Michelle Meyer, TBD non academic

Supervisory Board (SB)

Network Coordinator (NC)

External Advisory Board (EAB)

EC liaisonDC Committee (DCC)

WP1 Management

Admin.Support
Team (AST)

Eq. Opportunity 
Board

WP2 & 3 
Research

Research Groups

WP4 Training

DC
Development 
Team (DT)

Associated 
Partners

WP5 Data

Data Use 
Committee

WP6 Ethics 

Ethics 
Committee

WP7 
Dissemination 

Dissemination 
Office

Structure



Be aware, ESSGN DCs, you have meetings on Wednesday 

Committee   Time

DC Committee  9.00-9.30

Supervisory Board  9.30-11.00
 

Parallel Session  

DC Development Team 11.15-12.15

Data Use Committee  11.15-12.15

Ethics Committee  11.15-12.15



DC committee needs to elect a chair (anybody?)

Committee   Time

DC Committee  9.00-9.30

Supervisory Board  9.30-11.00
 

Parallel Session  

DC Development Team 11.15-12.15

Data Use Committee  11.15-12.15

Ethics Committee  11.15-12.15



Supervisory Board (SB)
Supervisory Board 
Institute Name Email address
VU Titus Galama t.j.galama@vu.nl
EUR Hans van Kippersluis hvankippersluis@ese.eur.nl
U of Bielefeld Felix Tropf fctropf@gmail.com
U of Bologna Pietro Biroli pietro.biroli@unibo.it

U of Oslo
Eivind Ystrom 
(Alexandra) eivind.ystrom@psykologi.uio.no

U of Uppsala Rafael Ahlskog rafael.ahlskog@statsvet.uu.se
U of Bristol Stephanie von Hinke s.vonhinke@bristol.ac.uk
U of Oxford Melinda Mills melinda.mills@sociology.ox.ac.uk
EUR Xinmiao Zhang (DC) xinmiaozh@gmail.com 
U of Oslo Ralph Porneso (DC) ralphporneso@gmail.com

• Main decision-making body of ESSGN 
• Composed of one representative from each beneficiary 

and two DC representatives 
• Will supervise network activities and ensure adherence 

to the consortium agreement 

mailto:t.j.galama@vu.nl
mailto:hvankippersluis@ese.eur.nl
mailto:fctropf@gmail.com
mailto:pietro.biroli@unibo.it
mailto:eivind.ystrom@psykologi.uio.no
mailto:rafael.ahlskog@statsvet.uu.se
mailto:s.vonhinke@bristol.ac.uk
mailto:melinda.mills@sociology.ox.ac.uk
mailto:xinmiaozh@gmail.com
mailto:ralphporneso@gmail.com


External Advisory Board (EAB)
External Advisory Board
Affiliation Name Email address
University of Texas Paige Harden harden@utexas.edu
Geisinger Michelle Meyer mmeyer@geisinger.edu

UCLA Daniel Benjamin 
daniel.benjamin@gmail.com; 
daniel.benjamin@anderson.ucla.edu

UNC Kathleen Mullen kathie_harris@unc.edu
Tbd – non 
academic

• Provides an independent, authoritative assessment of 
the progress of ESSGN

• External monitor 
• Provide strategic advice to stakeholders

mailto:mmeyer@geisinger.edu
mailto:daniel.benjamin@gmail.com
mailto:daniel.benjamin@gmail.com
mailto:kathie_harris@unc.edu


DC Committee (DCC)
Doctoral candidates
DCs Name E-mail address Institute
DC1 Tim Wienand tim-wienand@gmx.de EUR
DC2 Xinmiao Zhang xinmiaozh@gmail.com EUR
DC3 Qiyuan Peng pengqiyuan1128@gmail.com U of Oslo
DC4 tbd VU

DC5 Sergio Ordonez-Beltran
sergio-daniel.ordonez-
beltran@etu.univ-amu.fr U of Bristol

DC6 Nadia Harerimana nadia.harerimana@mssm.edu U of Bielefeld
DC7 Lyydia Alajääskö lyydia.alajaasko@gmail.com VU
DC8 Rossella de Sabbata rosselladesabbata@gmail.com U of Bristol 
DC9 Vincent Straub vincejstraub@gmail.com U of Oxford
DC10 Mar Talens Martin-Borregon mar.talensmb@gmail.com U of Bologna
DC11 Tomeu Lopez-Nieto Veitch tomeu.lnv@gmail.com U of Bologna
DC12 Ralph Porneso ralphporneso@gmail.com U of Oslo
DC13 Asya Bülbül asiabulbul@gmail.com U of Uppsala

• The DC chair will be elected by you (on Weds)
• Chair will rotate annually
• Report to DC Development Team
• Meet in person at network meetings (more frequently if 

required)

mailto:tim-wienand@gmx.de
mailto:xinmiaozh@gmail.com
mailto:pengqiyuan1128@gmail.com
mailto:sergio-daniel.ordonez-beltran@etu.univ-amu.fr
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mailto:nadia.harerimana@mssm.edu
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mailto:asiabulbul@gmail.com


Administrative Support Team
Administrative Support Team 
Affiliation Name Email address

VU
Project manager -
Kim Zandvliet k.zandvliet-oerlemans@vu.nl

VU
Project control -
Imane Batou i.batou@vu.nl
Legal

VU

Research Office 
(Data steward, 
grant advisor) Researchoffice.sbe@vu.nl

• The team will support the coordinators in the day-to-day 
management and communication

• Liaise with funding authority concerning reporting, 
financial, legal and risk management

mailto:i.batou@vu.nl


Equal Opportunity Board
Equal Opportunity Board  
Affiliation Name Email address
VU Titus Galama t.j.galama@vu.nl
U of Bristol Stephanie von Hinke  s.vonhinke@bristol.ac.uk

VU Kim Zandvliet k.zandvliet-oerlemans@vu.nl

• In case of any grievances regarding equal opportunities
• Promoting gender equality on committees

mailto:t.j.galama@vu.nl
mailto:s.vonhinke@bristol.ac.uk


DC Development Team (DT)
DC Development Team   
Affiliation Name Email address

EUR
Supervisor 1 –
Hans van Kippersluis hvankippersluis@ese.eur.nl

VU
Supervisor 2 –
Abdel Abdellaoui a.abdellaoui@amsterdamumc.nl

U of Bristol 
Nicolai Vitt 
(Postdoc) nicolai.vitt@bristol.ac.uk

EUR 
Dilnoza Muslimova 
(Postdoc) muslimova@ese.eur.nl

U of Uppsala
Asya Bülbül (DC) 
(rotate annually)

asiabulbul@gmail.com 

U of Oslo 
Qiyuan Peng (DC) 
(rotate annually)

pengqiyuan1128@gmail.com

• Assess progress in research and career development by 
reviewing each DC’s Personal Career Development Plan

• Organise mentoring to provide advice to DCs and supervisors
• Coordinate task-related, generic and transferable skills at 

annual workshops

mailto:hvankippersluis@ese.eur.nl
mailto:asiabulbul@gmail.com
mailto:pengqiyuan1128@gmail.com


Data Use Committee 
Data Use Committee   
Affiliation Name Email address

UBIEL 
WP 3 Lead 
Martin Diewald martin.diewald@uni-bielefeld.de

U of Bologna Nicola Barban n.barban@unibo.it

U of Oxford
Vincent Straub
(DC) vincent.straub@seh.ox.ac.uk

VU
Lyydia Alajääskö 
(DC)

lyydia.alajaasko@gmail.com

U of Bristol
Sergio Ordonez-
Beltran (DC) sergio-daniel.ordonez-beltran@etu.univ-amu.fr 

• Ensure setting up necessary infrastructure
• Formulate Data Management Plan
• Each University remains responsible for liaising with 

own IT departments regarding security protocols and 
safe data storage

mailto:n.barban@unibo.it
mailto:lyydia.alajaasko@gmail.com
mailto:sergio-daniel.ordonez-beltran@etu.univ-amu.fr


Ethics Committee
Ethics Committee
Affiliation Name Email address
VU Aysu Okbay aysuokbay@gmail.com
EUR Niels Rietveld nrietveld@ese.eur.nl
U of Oslo Qiyuan Peng (DC) pengqiyuan1128@gmail.com
EUR Tim Wienand (DC) tim-wienand@gmx.de

U of Bologna
Tomeu Lopez-
Nieto Veitch (DC) tomeu.lnv@gmail.com

• Advise on ethical matters, in particular to those relating 
to the use of genetic data

• Meet in person at joint meetings (more if necessary)

mailto:nrietveld@ese.eur.nl
mailto:pengqiyuan1128@gmail.com
mailto:tim-wienand@gmx.de
mailto:tomeu.lnv@gmail.com
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Health disparities between SES groups are large …

• Substantial inequalities in health exist across a multi-
tude of indicators of socioeconomic status (SES)
i. education, income, wealth, minority status 

 
• … and across multiple indicators of health 

i. subjective measures of health
ii. objective measures: onset of chronic diseases, 

disability and mortality (e.g., Adler et al. 1994, 
Marmot et al. 1991, Smith 1999) 



… and they start very early in life

• Substantial inequalities in health exist across a multi-
tude of indicators of socioeconomic status (SES) 
i. education, income, wealth, minority status 

 
• … and across multiple indicators of health 

i. subjective measures of health
ii. objective measures: onset of chronic diseases, 

disability and mortality (e.g., Adler et al. 1994, 
Marmot et al. 1991, Smith 1999) 

How early?



… and they start very early in life

• Substantial inequalities in health exist across a multi-
tude of indicators of socioeconomic status (SES) 
i. education, income, wealth, minority status 

 
• … and across multiple indicators of health 

i. subjective measures of health
ii. objective measures: onset of chronic diseases, 

disability and mortality (e.g., Adler et al. 1994, 
Marmot et al. 1991, Smith 1999) 

• Differences in health start early, become more pronoun-
ced as children age, and widen until about age 60 when 
differences in health appear to narrow (Case et al. 2002) 



Center for Economic and Social Research (CESR)

Percentage reporting fair/poor health by specific 
household-income quartile

age (Lynch, 2003; Ross & Wu, 1996). Selective mortality and cohort effects
obscure this process, as lower SES people are more likely to die, resulting
in an apparently healthier surviving disadvantaged population, and explain-
ing the narrowing of disparities in old age. The competing view, the
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Fig. 1. Percentage Reporting Fair or Poor Health (bottom two categories of Self-
Reported Health) by Age-Specific Household Income Quartiles. Top: US National
Health Interview Surveys, 1991!1996, taken from Smith (2004) and reproduced
with permission of John Wiley & Sons, Inc. Bottom: Dutch CBS Health Interview

Surveys, 1983!2000, own calculations.
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Percentage Reporting Fair or Poor Health (bottom two categories of Self-Reported Health) by Age-Specific Household Income 
Quartiles. Left: US National Health Interview Surveys, 1991--1996, taken from Smith (2004); Right: Dutch CBS Health Inter-
view Surveys, 1983—2000, taken from Galama & Van Kippersluis (2013),  Health and Inequality: Research on Economic 
Inequality, 21, p.263

U.S. Netherlands



They start very early in life

Self-reported health status (1=excellent, 5=poor) for children (LHS) and adults (RHS) from the National Health Interview 
Survey. College-age adults (ages 18-24) not included due to concerns about  representativeness of this sample, and because 
it is unclear whether these respondents report their current  incomes or that of the families in which they were raised. Figure 
taken from Case, Lubotsky & Paxson (2002).



This is true also for human capital (cog skills)

14. D. S. Karlan, Am. Econ. Rev. 95, 1688 (2005).
15. G. W. Harrison, J. A. List, J. Econ. Lit. 42, 1009 (2004).
16. D. A. Dillman, Mail and Internet Surveys: The Tailored

Design Method (Wiley, New York, 2000).
17. Beyond this statistical challenge, the Web is changing

how social science, along with all of science, is
conducted. For example, massive records of the Web
transactions themselves are data for analysis that uses
complexity theory and network theory to understand
social and economic networks (42, 43).

18. J. Witte in Society Online: The Internet in Context,
P. N. Howard, S. Jones, Eds. (Russell Sage Foundation,
New York, 2004), p. xv.

19. M. Schonlau, A. Van Soest, A. Kapteyn, M. Couper,
J. Winter, in preparation.

20. W. S. Bainbridge in Computing in the Social Sciences,
O. V. Burton, Ed. (University of Illinois Press, Urbana, IL,
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PERSPECTIVE

Skill Formation and the Economics of
Investing in Disadvantaged Children
James J. Heckman

This paper summarizes evidence on the effects of early environments on child, adolescent, and
adult achievement. Life cycle skill formation is a dynamic process in which early inputs strongly
affect the productivity of later inputs.

F
our core concepts important to devising
sound social policy toward early childhood
have emerged from decades of independent

research in economics, neuroscience, and develop-
mental psychology (1). First, the architecture of the
brain and the process of skill formation are
influenced by an interaction between genetics and
individual experience. Second, the mastery of skills
that are essential for economic success and the
development of their underlying neural pathways
follow hierarchical rules. Later attainments build
on foundations that are laid down earlier. Third,
cognitive, linguistic, social, and emotional com-
petencies are interdependent; all are shaped power-
fully by the experiences of the developing child;
and all contribute to success in the society at large.
Fourth, although adaptation continues throughout
life, human abilities are formed in a predictable
sequence of sensitive periods, during which the
development of specific neural circuits and the be-
haviors they mediate are most plastic and therefore
optimally receptive to environmental influences.

A landmark study concluded that Bvirtually
every aspect of early human development, from
the brain_s evolving circuitry to the child_s ca-
pacity for empathy, is affected by the environ-
ments and experiences that are encountered in a

cumulative fashion, beginning in the prenatal pe-
riod and extending throughout the early child-
hood years[ (2). This principle stems from two
characteristics that are intrinsic to the nature of
learning: (i) early learning confers value on ac-
quired skills, which leads to self-reinforcing moti-
vation to learn more, and (ii) early mastery of a
range of cognitive, social, and emotional compe-
tencies makes learning at later ages more efficient
and therefore easier and more likely to continue.

Early family environments are major predic-
tors of cognitive and noncognitive abilities.
Research has documented the early (by ages 4
to 6) emergence and persistence of gaps in cog-
nitive and noncognitive skills (3, 4). Environ-
ments that do not stimulate the young and fail to
cultivate these skills at early ages place children
at an early disadvantage. Disadvantage arises
more from lack of cognitive and noncognitive
stimulation given to young children than simply
from the lack of financial resources.

This is a source of concern because family
environments have deteriorated. More U.S. chil-
dren are born to teenage mothers or are living in
single parent homes compared with 40 years ago
(5). Disadvantage is associated with poor parent-
ing practices and lack of positive cognitive and
noncognitive stimulation. A child who falls be-
hind may never catch up. The track records for
criminal rehabilitation, adult literacy, and public job
training programs for disadvantaged young adults
are remarkably poor (3). Disadvantaged early en-

Department of Economics, University of Chicago, Chicago, IL
60637, USA. Department of Economics, University College
Dublin, Dublin 4, Ireland. E-mail: jjh@uchicago.edu

Fig. 1. Average percentile rank on Peabody Individual Achievement Test–Math score by age and income
quartile. Income quartiles are computed from average family income between the ages of 6 and 10.
Adapted from (3) with permission from MIT Press.
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Relative importance of determinants not known

What do you think are the most 
important factors?



Relative importance of determinants not known

• Some claim
• 40% of early deaths are due to behavior
• 30% are due to genetic predispositions
• 15% are due to social circumstances
• 10% are due to shortfalls in medical care, and
• 5% are due to environmental exposures (McGinnis et al. 2002)

• These domains, however, interact, suggesting this 
simple division is not as clear cut
i. genes may predispose individuals to certain unhealthy 

behaviors and health conditions
ii. but extent to which genes are expressed depends on environ-

mental exposures (Gluckman & Hanson 2006, Rutter 2006)
iii. fetal environment can become biologically embedded in the 

body (Gluckman & Hanson 2006)
• There is a need to disentangle biological pathways vs. 

behavioral responses (Heckman 2012, Conti 2013)
McGinnis, et al. (2002) [cited in Heckman (2012)]



Socioeconomic circumstances

Behavior

Genetics

Eighty-five percent of early deaths due to

McGinnis, et al. (2002) [cited in Heckman (2012)]
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Socioeconomic circumstances

Behavior

Genetics

Eighty-five percent of early deaths due to

McGinnis, et al. (2002) [cited in Heckman (2012)]



What is social-science genetics?

• New field at the intersection of the social-sciences and 
genetics that seeks to:
i. uncover genetic variants related to social, economic and health 

traits
ii. use the resulting findings to improve our understanding of 

socio-economic and health outcomes, choices and behaviors
• Examples of social/socio-economic traits and outcomes:

i. economic preferences (e.g., risk, time)
ii. health and human capital (e.g., obesity, education, cognition, 

subjective wellbeing, smoking, drinking, mental health, ADHD)
iii. income, social deprivation, education

• Interdisciplinary field
• Europe has significant strengths in this area à ESSGN



Why now?

Press conference, June 26th, 2000
Completion of the first “rough draft” of the human genome



Costs rapidly falling



Genetic data is both valuable and cheap

• Conditional on the genotypes of the parents, the 
genotype of the offspring is the result of a perfectly 
randomized lottery draw
i. natural experiment
ii. genotype remains (almost entirely) constant throughout life 

and affects a broad range of phenotypes
• Nowadays, it is possible to collect high-accuracy 

measures of an individual’s genome at reasonable cost
i. sequencing (all ~3 billion genetic variants) ~ 600$ p.p.
ii. common genetic variants (~2 million SNPs) ~ 50$ p.p.
iii. customized sub-sets of common genetic variants p.p.

(e.g. metabo-chip ~200,000 SNPs) ~ 20$ p.p.
• Rapid decrease in genotyping costs continues

Courtesy Philipp Koellinger



Power of genetic prediction 

Genetics in the social sciences

Power of genetic discovery 

Revolution in genetic discovery and prediction

Genetic data in social-science panel datasets

+



Large panel datasets have released genetic data



... and, very large ones currently in the field



Why study genetics?

• Human behavior and achievement are heritable
• DNA is special 

i. immutable 
ii. determined at conception (it comes before everything else)

• Genetic discoveries can provide clues to causal 
pathways, biology, and guide interventions

• There is a need to integrate behaviors, socioeconomic 
environments / conditions and biology to understand 
human capital and health formation and disparities 
therein (Heckman 2012, Conti 2013)
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Heritability

• Heritability: the proportion of observed differences in a 
trait among individuals of a population that is due to 
genetic differences among these individuals
i. does not imply determinism or absence of choice
ii. puts no upper bound on the potential effect of the environment, 

even if h2=100%
iii. not a natural constant
iv. differences across time and environments

Courtesy Philipp Koellinger



Virtually all human traits are heritable

Polderman et al. (2015), Nature Genetics



Genetics for social scientists

Courtesy Pietro Biroli

• Four nucleotides are building blocks of DNA 
i. A (adenine), C (cytosine), G (guanine), T (thymine)

• Human genome ~3.1 billion pairs (one from mother, one 
from father) of nucleotides on 23 chromosomes

• Unrelated humans have >99% of 
their genomes in common  

• A locus at which nucleotides 
vary is called a Single Nucleotide 
Polymorphism (SNP)



• Introduction to ESSGN
• ESSGN structure, goals and projects
• Motivation
• Social-science genetics

i. introduction
ii. genetics primer
iii. genome-wide association studies
iv. polygenic indices
v. gene-by-environment (GxE) interplay

• Concluding remarks

Outline



Candidate gene studies (theoretical testing)



Candidate gene studies (theoretical testing)



Candidate gene studies (theoretical testing)



Candidate gene studies (theoretical testing)



Genetic discovery studies (GWAS)

Genome-wide association studies (GWAS)
• A-theoretical testing of all 𝐾≪𝐽 SNPs measured on the 

chip (𝐾≈ 0.5-2.5 million) or imputed (𝐾≈ 9 million).
• Genome-wide significance: p = 5 x 10-8
• Frequentist justification: Bonferroni correction for ~1 

million effectively independent loci in Europeans
• Bayesian justification: Need stringent significance 

threshold given low prior for any specific locus
• Causal model:

$𝑦! = '
"#$

%

𝛽"𝑥!" + 𝒛!&𝜸 + 𝜂!.

Courtesy Dan Benjamin



The dimensionality problem

Cannot estimate this regression:

$𝑦! = '
"#$

%

𝛽"𝑥!" + 𝒛!&𝜸 + 𝜂!

unless 𝑵 > 𝑲+ 𝜸 ≈ 𝟗 million!

Standard solution: estimate univariate regressions:

$𝑦! = 𝛽"'()*𝑥!" + 𝒛!&𝜸" + 𝜖!".

Abdel, Aysu, will discuss GWAS in much more detail

Courtesy Dan Benjamin



EA1 (3 genome-wide SNPs) – Manhattan plot

Rietveld et al. (2013, Science)
Discovery: N = 101,069 individuals (41 datasets)
Replication:  N = 25,490 individuals (12 datasets)

!



EA2 (74 genome-wide SNPs)

Okbay et al. (2016, Nature)
Discovery:  N = 293,723 individuals (63 datasets)
Replication:  N = 111,349 individuals (UK Biobank 1st release)



EA3 (1,271 genome-wide SNPs)

Lee et al. (2018, Nature Genetics)
Discovery: N = 1,131,881 individuals (70 datasets)
Replication: Okbay et al. (N = 405,073) in new data (N = 726,808), and vice-versa.



EA4 (3,952 genome-wide SNPs)

Okbay et al. (2022, Nature Genetics)
Discovery: N = 3,037,499 individuals (69 cohorts + UKB + 23andMe)

ARTICLESNATURE GENETICS

sex, year of birth, their interaction and genetic PCs, and applied 
a uniform set of quality-control procedures (Supplementary Note 
contains a comprehensive description). The final meta-analysis 
contains association results for ~10 million SNPs. The quantile–
quantile plot in Extended Data Fig. 1 shows that the P values deviate 
strongly from the uniform distribution. According to the linkage 
disequilibrium (LD) score regression8 intercept (1.66), confound-
ing accounts for 7% of the inflation, similar to previous GWAS of 
EA (ref. 2) (Extended Data Fig. 2 shows the LD score plot). The 
Manhattan plot in Fig. 1 and many of our subsequent analyses are 
based on test statistics adjusted for the LD score intercept.

We identify 3,952 lead SNPs, defined as approximately uncorre-
lated (pairwise r2 < 0.1) variants with an association P value below 
5 × 10−8. At the stricter threshold9 of P < 1 × 10−8, the number declines 
to 3,277 (Supplementary Table 1; Supplementary Note contains a 
description of the clumping algorithm). To assess the sensitivity of our 
conclusions about the number of independent SNPs, we conducted a 
conditional and joint (COJO) multiple-SNP analysis10. This analysis 
identified 2,925 SNPs (Supplementary Table 2); 41 of these are in LD 
(r2 > 0.1) with other COJO lead SNPs and may represent secondary 
associations within a locus. Adjusted for the winner’s curse, we find 
that the effects of our lead SNPs are consistently quite small. On aver-
age, an additional copy of the reference allele of the median SNP is 
associated with 1.4 weeks more schooling: the effects at the 5th and 
95th percentiles (in absolute value) are 0.9 and 3.5 weeks, respectively 
(Supplementary Note contains details on these calculations). We also 
examined the out-of-sample replicability of the lead SNPs identi-
fied in the most recent previous meta-analysis2. In the independent 
23andMe data, the replication record is broadly in line with theo-
retical predictions derived from an empirical Bayesian framework 
described in the Supplementary Note (Extended Data Fig. 3).

Biological annotation. To compare results from biological anno-
tation of our meta-analysis to that of the most recent previous 
meta-analysis, we applied stratified LD score regression11 to both 
sets of summary statistics using a recent set of SNP annotations12. 
The results are very similar across the two meta-analyses, but 
standard errors are smaller when using the current meta-analysis 

results, as expected given the larger sample size (Supplementary  
Fig. 1a–d). Notably, we replicate the unexpected result of relatively 
weak enrichment of genes highly expressed in glial cells (astrocytes 
and oligodendrocytes) relative to neurons.

X-chromosome GWAS results. To update the previous 
X-chromosome analysis, we conducted a sample-size-weighted 
meta-analysis of mixed-sex association results from UKB and 
23andMe (N = 2,713,033) for ~200,000 SNPs on the X chromosome 
(Extended Data Fig. 4). We identified 57 lead SNPs with estimated 
effects in the range 1 to 3 weeks of schooling. Our findings are fully 
consistent with earlier conclusions: SNP heritability due to the X 
chromosome of 0.4% and (using sex-stratified association analyses 
in the UKB) a male–female genetic correlation on the X chromo-
some close to unity (r

g

= 0.94, s.e. = 0.03).

Dominance GWAS. We conducted a GWAS of dominance 
deviations from the additive model (Supplementary Note) by 
meta-analyzing summary statistics from association analyses con-
ducted in 23andMe and UKB (N = 2,574,253). Theory and evidence 
from the quantitative genetics literature, including findings from 
two recent papers13,14 that estimated dominance SNP heritability 
across dozens of phenotypes (but not EA), suggest that dominance 
effects explain at most a very small share of the variance in poly-
genic phenotypes15. Nevertheless, in the behavior genetics litera-
ture, when the phenotypic correlation between monozygotic twins 
is more than twice as large as the phenotypic correlation between 
dizygotic twins, it remains common practice to attribute the viola-
tion of the additive model to dominance variance.

The Manhattan plot from our dominance GWAS is shown in red 
in the bottom panel of Fig. 1. There are no genome-wide-significant 
SNPs. Power calculations indicate that, at genome-wide signifi-
cance, we had 80% power to detect dominance effects with an R2 
of 0.0015% (Supplementary Note). Such effect sizes would be over 
an order of magnitude smaller than the largest additive effects  
(R2 ≅ 0.04%). Therefore, the absence of genome-wide-significant 
SNPs suggests that dominance effects of common SNPs, taken indi-
vidually, are negligibly small.
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Fig. 1 | Manhattan plots for the additive and dominance GWASs. The top graph (green) shows the additive GWAS (N!=!3,037,499 individuals), and the 
bottom graph (red) shows the dominance GWAS (N!=!2,574,253 individuals). The P value and mean χ2 values are based on inflation-adjusted two-sided 
Z tests. The x axis is chromosomal position, and the y axis is the significance on a −log10 scale. The dashed line marks the threshold for genome-wide 
significance (P = 5!×!10−8).
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GWAS Catalog



Explosion of GWAS



Each color indicates a trait category
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GWAS are increasingly powerful

Martin et al. (2019) Nature Genetics; updated Fatumo et al. (2022) Nature Medicine



... but genetics has a HUGE diversity problem

Martin et al. (2019) Nature Genetics; updated Fatumo et al. (2022) Nature Medicine



... but genetics has a HUGE diversity problem

Martin et al. (2019) Nature Genetics; updated Fatumo et al. (2022) Nature Medicine
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Polygenic Index (PGI)

Summary measure of an individuals’ ‘genetic predisposition’

Best linear genetic predictor

Does not mean it is solely biological or immutable

 It captures environmental components

Asyu Okbay will discuss these in much more detail



Think of it as the weighted sum over all SNP effects 
across the genome

Okbay et al. (2022, Nature Genetics)
Discovery: N = 3,037,499 individuals (69 cohorts + UKB + 23andMe)

ARTICLESNATURE GENETICS

sex, year of birth, their interaction and genetic PCs, and applied 
a uniform set of quality-control procedures (Supplementary Note 
contains a comprehensive description). The final meta-analysis 
contains association results for ~10 million SNPs. The quantile–
quantile plot in Extended Data Fig. 1 shows that the P values deviate 
strongly from the uniform distribution. According to the linkage 
disequilibrium (LD) score regression8 intercept (1.66), confound-
ing accounts for 7% of the inflation, similar to previous GWAS of 
EA (ref. 2) (Extended Data Fig. 2 shows the LD score plot). The 
Manhattan plot in Fig. 1 and many of our subsequent analyses are 
based on test statistics adjusted for the LD score intercept.

We identify 3,952 lead SNPs, defined as approximately uncorre-
lated (pairwise r2 < 0.1) variants with an association P value below 
5 × 10−8. At the stricter threshold9 of P < 1 × 10−8, the number declines 
to 3,277 (Supplementary Table 1; Supplementary Note contains a 
description of the clumping algorithm). To assess the sensitivity of our 
conclusions about the number of independent SNPs, we conducted a 
conditional and joint (COJO) multiple-SNP analysis10. This analysis 
identified 2,925 SNPs (Supplementary Table 2); 41 of these are in LD 
(r2 > 0.1) with other COJO lead SNPs and may represent secondary 
associations within a locus. Adjusted for the winner’s curse, we find 
that the effects of our lead SNPs are consistently quite small. On aver-
age, an additional copy of the reference allele of the median SNP is 
associated with 1.4 weeks more schooling: the effects at the 5th and 
95th percentiles (in absolute value) are 0.9 and 3.5 weeks, respectively 
(Supplementary Note contains details on these calculations). We also 
examined the out-of-sample replicability of the lead SNPs identi-
fied in the most recent previous meta-analysis2. In the independent 
23andMe data, the replication record is broadly in line with theo-
retical predictions derived from an empirical Bayesian framework 
described in the Supplementary Note (Extended Data Fig. 3).

Biological annotation. To compare results from biological anno-
tation of our meta-analysis to that of the most recent previous 
meta-analysis, we applied stratified LD score regression11 to both 
sets of summary statistics using a recent set of SNP annotations12. 
The results are very similar across the two meta-analyses, but 
standard errors are smaller when using the current meta-analysis 

results, as expected given the larger sample size (Supplementary  
Fig. 1a–d). Notably, we replicate the unexpected result of relatively 
weak enrichment of genes highly expressed in glial cells (astrocytes 
and oligodendrocytes) relative to neurons.

X-chromosome GWAS results. To update the previous 
X-chromosome analysis, we conducted a sample-size-weighted 
meta-analysis of mixed-sex association results from UKB and 
23andMe (N = 2,713,033) for ~200,000 SNPs on the X chromosome 
(Extended Data Fig. 4). We identified 57 lead SNPs with estimated 
effects in the range 1 to 3 weeks of schooling. Our findings are fully 
consistent with earlier conclusions: SNP heritability due to the X 
chromosome of 0.4% and (using sex-stratified association analyses 
in the UKB) a male–female genetic correlation on the X chromo-
some close to unity (r

g

= 0.94, s.e. = 0.03).

Dominance GWAS. We conducted a GWAS of dominance 
deviations from the additive model (Supplementary Note) by 
meta-analyzing summary statistics from association analyses con-
ducted in 23andMe and UKB (N = 2,574,253). Theory and evidence 
from the quantitative genetics literature, including findings from 
two recent papers13,14 that estimated dominance SNP heritability 
across dozens of phenotypes (but not EA), suggest that dominance 
effects explain at most a very small share of the variance in poly-
genic phenotypes15. Nevertheless, in the behavior genetics litera-
ture, when the phenotypic correlation between monozygotic twins 
is more than twice as large as the phenotypic correlation between 
dizygotic twins, it remains common practice to attribute the viola-
tion of the additive model to dominance variance.

The Manhattan plot from our dominance GWAS is shown in red 
in the bottom panel of Fig. 1. There are no genome-wide-significant 
SNPs. Power calculations indicate that, at genome-wide signifi-
cance, we had 80% power to detect dominance effects with an R2 
of 0.0015% (Supplementary Note). Such effect sizes would be over 
an order of magnitude smaller than the largest additive effects  
(R2 ≅ 0.04%). Therefore, the absence of genome-wide-significant 
SNPs suggests that dominance effects of common SNPs, taken indi-
vidually, are negligibly small.
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Fig. 1 | Manhattan plots for the additive and dominance GWASs. The top graph (green) shows the additive GWAS (N!=!3,037,499 individuals), and the 
bottom graph (red) shows the dominance GWAS (N!=!2,574,253 individuals). The P value and mean χ2 values are based on inflation-adjusted two-sided 
Z tests. The x axis is chromosomal position, and the y axis is the significance on a −log10 scale. The dashed line marks the threshold for genome-wide 
significance (P = 5!×!10−8).
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Polygenic indices (PGIs) explain growing share of 
the variation between individuals

ARTICLESNATURE GENETICS

power that is due to direct effects5,6, or causal effects of an individu-
al’s genetic material on that individual. When controls for both par-
ents’ PGIs are included, we refer to the coefficient from a regression 
of an individual’s phenotype on the individual’s PGI as the direct 
effect of the PGI; when those controls are omitted, we refer to it 
as the population effect. (The regression controlling for parental 

PGIs gives an equivalent estimate of the direct effect of the PGI as a 
regression on PGIs constructed from transmitted and nontransmit-
ted parental alleles5; Supplementary Note.) The population effect 
captures the sum of the direct effect, indirect effects from relatives 
(e.g., genetic influences on parents’ education, socioeconomic status 
and behavior), other gene–environment correlation (i.e., correlation  
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Okbay et al. (2022, Nature Genetics)
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Can environments protect against genetic risk?
Nature Nurture



Interplay between G and E in behaviors / outcomes
(just one type of application; there are many others)

G + E + GxE



Barcellos, Carvalho and Turley (2018), PNAS

health outcomes of individuals born just before and just after
September 1, 1957, controlling for cohort trends. Intuitively,
individuals born on August 31, 1957, and individuals born on
September 1, 1957, were comparable (e.g., in terms of their
childhood health) before the reform. In other words, the health
of those born on August 31, 1957, provides a counterfactual of
the health that those born on September 1, 1957, would have had
had they not been forced to stay in school until age 16. For this
reason, any later-life health differences between these two
groups can be attributed to the causal effect of the additional
year of schooling. In SI Appendix, section B, we offer evidence
that those born just before and just after September 1, 1957,
were comparable before the reform. For example, we show that
the two groups are genetically similar. Genetic markers are
useful to test the RDD assumption because genotypes are ob-
jectively measured, determined at conception, and immutable.
To investigate whether the effect of education on health varies

with genetic makeup, we compared the discontinuous changes in
health of groups with different PGSs, accounting for the differ-
ences in the fraction of individuals affected by the reform in
different PGS groups. Fig. 2 B and C shows that, among cohorts
born before September 1957, those with higher BMI PGSs and
those with lower EA PGSs were less likely to stay in school until
age 16. As expected, the results in Fig. 2C represent the strongest
GxE effect resulting from the reform: The difference in the
fraction staying in school until age 16 between the bottom
and top EA PGS terciles fell from 18.4 percentage points before
the reform to 3.1 percentage points afterward. Because almost

everyone stayed in school until at least age 16 after the reform,
there was little variation in EA at this level left after the reform
to be explained by the EA PGS.
Formally, we estimated the following regression:

Healthi = β0 + β1ðEdu16i ×PGSiÞ+ β2Edu16i + β3PGSi
+ f ðDoBiÞ+

!
Edu16i ×PC’

i

"
β4 +PC’

iβ5 + x’iβ6 + ui,
[1]

where Healthi is a health outcome; Edu16i is an indicator for
staying in school until age 16; PGSi is the BMI or EA PGS;
f(DoBi) is a quadratic polynomial in date of birth (we allow for
different pretrends and posttrends); PCi is a vector of the first
15 principal components of the genotypic data; and xi is a vector
of predetermined characteristics—namely age, age-squared, gen-
der, month, and country of birth. We include Edu16i ×PC’

i and
PC’

i to correct for population stratification (43, 44). To account for
the endogeneity of Edu16i and for the differential impacts of the
reform on the education of groups with different PGSs, we esti-
mated Eq. 1 through two-stages least squares (2SLS), using the
reform as an instrument. The 2SLS estimates the effect of staying
in school until age 16 among those affected by the reform (i.e.,
those who would have dropped out at age 15 in the absence of the
reform). In other words, our results cannot be explained by the
fact that individuals with lower EA PGSs (or individuals with
higher BMI PGSs) were more likely to have been affected by
the reform. We restricted the sample to participants of European

Fig. 3. Does the effect of staying in school until age 16 depend on the BMI PGS? Bars show 2SLS point estimates of effect of staying in school until age 16 on
binary measures of the body size index (A), lung function index (B), blood pressure index (C), and summary index (D) for the bottom, middle, and top terciles
of the BMI PGS distribution. Bars are centered at the median PGS value in the tercile. Brackets show 95% confidence intervals. Sloped lines plot β1PGSi + β2.
P corresponds to the P value of H0:β1 = 0.
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D
ow

nl
oa

de
d 

at
 N

or
ris

 M
ed

ic
al

 L
ib

ra
ry

 U
ni

v 
So

ut
he

rn
 C

al
ifo

rn
ia

 o
n 

Ap
ril

 3
, 2

02
0 

Terciles of BMI PGI and the 1972 ROSLA which raised school leaving age to age 16 years.



Rietveld et al. (in progress)

Terciles of EA PGS (EA4) and the 1972 ROSLA which raised school leaving age to age 16 years.



Baker et al. (in progress)

Quintiles of IHD PGS by Infant Mortality Rate in the year and district of birth.



Biroli et al. (in progress)

Meta analysis of PGI by childhood (parental) SES for 45 traits in three datasets
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Abdellaoui et al. (2019)
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How can results be used?
• Clarify misunderstandings

i. Illustrate limits of a deterministic view of genetics
• Inform debate on “fairness” of inequality

i. EOp framework considers “effort” to be rewarded
ii. What does that mean with two lotteries of life (G and family)

• Compensate for disadvantages
i. e.g., dyslexia

• Help people make better decisions
i. e.g., retirement planning

• Make better public policies
i. based on better understanding of the effects of policies

• Improve public health
i. faster progress in genetic epidemiology by including social-

scientific insights and variables
ii. early intervention based on genetic risks
iii. personalized medicine

Courtesy Philipp Koellinger



Exciting young new field of inquiry at the intersection of 
several disciplines, using new technology. Much needs 
to be worked out but progress is immensely fast.
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Family background and behavior

Thank You!
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